Chemistry in young gas-rich disks: overview

Ewine F. van Dishoeck

Leiden Observatory

Outline

- Observations
 - Single-dish submillimeter
 - Millimeter interferometry
 - Infrared spectroscopy
 - absorption toward edge-on disks
- Models
 - Radial transport models
 - 1+1D, 2D models of static flaring disks
 - Tenuous 'transitional' disks
- Summary

Discuss only outer disk chemistry 50-400 AU

Why chemistry?

- Detection of exoplanets => renewed interest in inventory and lifecycle gas + dust
 - Is chemical composition interstellar or 'nebular'? How is it modified in disks?
- Molecules as probes of disk structure
 - Radial + vertical T, n, ionization fraction,
- Chemistry as tracer of dynamical processes
 - Degree of vertical mixing?
- Molecules as tracers of gas mass
 - When does gas disappear?

I. Observations: submillimeter single dish

- Observations of molecules other than CO
 - Initial detections by Dutrey et al. 1997, Kastner et al. 1997
 - Subsequent surveys by van Zadelhoff et al. 2001, Thi et al. 2004, Greaves 2004, Bacmann, Schreyer et al. in prep,
- Advantage high-frequency => high-J lines
 - Critical densities well matched to high densities in disks
 - Probe n=10⁶-10⁸ cm⁻³, T=10-100 K
 - Smaller beams at high frequency => less beam dilution
 - 10-15" => data are spatially unresolved for disks at 150 pc
 - Avoid confusion with any surrounding cloud or envelope material
 - M_{disk} ~0.01 M_{sun} , 100 times less than typical protostellar envelope mass

Lines are weak: at limit of capabilities current facilities!

Examples single-dish data

Observations: millimeter interferometry

Starting to image the chemistry on 100 AU scales

LkCa 15: OVRO mm array 2" resolution

Kessler, Qi, Blake et al. 2003

Some observational findings: submillimeter data

- Simple gas-phase molecules observed
 - Ion-molecule reactions (HCO+, N₂H+)
 - Photo-processes (high CN/HCN)
 - High deuterium fractionation (DCO+, H₂D+)
 - Few complex organic species detected (H₂CO, CH₃OH)
- Data only sensitive to >50 AU
- Lines come from 'warm' 20-40 K layer with n=10⁶-10⁸ cm⁻³
- Disk-averaged abundances are 'depleted' by factor of 5-100
 - Using mass from dust continuum and assuming gas/dust=100
- Molecules can have different radial distributions
 - E.g., HCN and CN inner 'hole', in contrast with CO and HCO+

Detection of DCO⁺ in the TW Hya disk

TW Hya face-on disk 1.1 μm 1.6 μm

Scattered light => radius 200 AU

Weinberger et al. 2002

van Dishoeck et al. 2003

- DCO⁺/HCO⁺=0.035 => emission arises from layer with heavy depletions
- Level of deuterium fractionation comparable with that found in cold pre-stellar cores and comets
- HCO⁺ abundance few x 10^{-11} 10^{-10} => lower limit on ionization fraction

Origin of strong deuteration

$$H_3^+ + HD \longrightarrow H_2D^+ + H_2$$

- $H_2D^+ + X \longrightarrow XD^+ + H_2$
- Reactions more rapid in forward direction at low T
- H_3^+ and H_2D^+ greatly enhanced when their main destroyer, CO, is frozen out on grains

 $=> H_2D^+$ should be best probe of cold midplane!

Detection of H₂D⁺ in disks

Measuring the ionization degree in the midplane

TW Hya CSO data

DM Tau

-Inferred ionization fractions at least few times $10^{-10} => sufficient$ for MRI mechanism to operate

Infrared vs submillimeter

Submillimeter:

- Very high spectral resolution (R>10⁶, <0.1 km/s)</p>
- Many gas-phase molecules with abundances down to 10⁻¹¹ w.r.t. H₂
- Emission => radial distribution at high angular resolution

• Infrared:

- Moderate spectral resolution (R~10³-10⁴)
- Gases and solids with abundances down to 10⁻⁷-10⁻⁸
- Molecules without permanent dipole moments (H₂, C₂H₂, CH₄, CO₂, CH₃, ...)
- PAHs, silicates, ices
- Absorption => pencil beam line-of-sight

Observations: infrared spectroscopy

- Emission in vibrational bands of H₂, CO, H₂O,
 H₃⁺ (TBC) => warm gas in inner few AU
 - Weintraub et al. 2001, Brittain & Rettig 2002, Brittain et al. 2003, Najita et al. 2003, Carr et al. 2003, Blake & Boogert 2004
- Silicate + PAH emission => see later talks
- Absorption of gases + ices toward edge-on disks

Spitzer's potential for ice observations

HH 46: solar-mass YSO

- Spitzer can study objects >100 times fainter than ISO
- Ice absorptions originate in cold outer envelope
- Abundances similar to high-mass YSO's, but higher solid CO₂ abundance up to CO₂/H₂O=0.4
- Evidence for thermal processing up to 50 K

Noriega-Crespo et al. 2004 Boogert et al. 2004

Ices toward a young, large edge-on disk

Boogert, Hogerheijde & Blake 2002 Pontoppidan et al. 2003

 $\lambda (\mu m)$

See also: Shuping et al. 2001 Elias 18

- Significant fraction of ices outside disk?

Where are the ices along the line-of-sight?

- Significant fraction of ice absorption can arise in foreground clouds and/or envelopes => need detailed study of each object individually
- Geometry very important

Spitzer observations of edge-on disks

-Ices may arise primarily in outer envelope

Spitzer + **VLT** observations of edge-on disk

Ophiuchus

Strongest solid CO absorption ever observed!

 $\frac{\text{CO}_{\text{solid}}/\text{CO}_{\text{gas}}}{\text{T}_{\text{ex}}(\text{CO})\sim50\text{ K}}$

Thi et al. 2002 Pontoppidan, Dullemond et al. 2004

VLT-ISAAC Ks band

- -- Abundances w.r.t. H₂O ice similar to low-mass YSO envelopes
- Detailed modeling of disk + surroundings indicates that up to 50% of ice absorptions may arise in disk; ices in disk may be heated to >40 K

II. Models: chemical processes in disks

Focus on outer disk chemistry, i.p. effect of UV

1D radial transport models

- Consider chemical evolution of parcel of gas as it moves radially from >100 AU to few AU
- Include large gas-phase chemistry network (few hundred species, few thousand reactions) and gas-grain adsorption/desorption processes
- Chemistry dominated by temperature profile: virtually no gas-phase molecules >10 AU, active gas-phase chemistry <10 AU
 - E.g., Bauer et al. 1997, Finocchi & Gail 1997, Gail 2001-2004, Willacy et al. 1998, Aikawa et al. 1997, 1999

Example

Abundances after 3x10⁶ yr, disk midplane

=> Everything frozen out at >10 AU

But this is NOT what is observed!

Flaring disk models (>50 AU)

- Calculate chemistry in vertical and radial directions in 1+1D static flaring models
 - Aikawa et al. 1999, 2001:
 - Kyoto minimum solar mass disk model
 - Low temperatures => needed artifically low sticking coefficient
 S=0.03 to match observations
 - Willacy & Langer 2000
 - Two-layer Chiang & Goldreich model
 - All molecules photodissociated in warm layer
 - All molecules frozen on grains in cold layers => needed high photodesorption rate to match observations
 - Aikawa et al. 2002, van Zadelhoff et al. 2003
 - D'Alessio et al. models with continuous T,n gradient
 - Warm molecular layer where molecules stay off the grains even with S=1
- No radial or vertical mixing included, but models allow important processes and parameters to be identified
 - Chemo-hydrodynamical models by Markwick et al. 2003, Ilgner et al. 2004 focus on inner 10 AU

Chemical structure of disks

- Surface layer: molecules dissociated by UV photons
- Warm intermediate layer: molecules not much depleted, rich chemistry
- Cold midplane: molecules heavily frozen out

⇒Chemistry dominated by UV in upper layers and by temperature profile in intermediate-midplane layers

Vertical structure (R=200 AU)

Model flowchart

- Many recent efforts concentrate on calculating T(gas) self-consistently
- T(gas)>>T(dust) in upper layers => outgassing?

Van Zadelhoff et al. 2001 Jonkheid et al. 2004 Kamp & Dullemond 2004 Hollenbach & Gorti 2004

Importance of shape and treatment UV radiation field

Full 2D calculation including absorption and scattering

Penetration depth depends on optical properties grains

Van Zadelhoff et al. 2003

Normal ISRF: ~1x10⁸ ph s⁻¹ cm⁻² ⇒Enhanced by factor > 1000 in upper layers

Effect of stellar far-UV

Green

Red

Blue

=> Molecules extended to greater height if no far-UV

Importance of Lyman α

Observed FUV spectra of T Tauri stars

- -Photodissociation rate $k_{pd} = \int \sigma(\lambda) I(\lambda) d\lambda$
- -Some molecules are dissociated by Ly α (e.g., H_2O , HCN), others are not (e.g. CN, CO, H_2)

Bergin et al. 2003

Models: tenuous 'transitional' disks

- Disks are optically thin to UV and IR radiation => analytic solution T_{dust}
- Disk masses (gas + dust) of order M_{Earth} , 1000 x less than young disks
- Initial work: A-stars; use stellar atmosphere model for stellar radiation
- Recent work: extension to G-stars including chromosphere

HD 141569 transitional disk: dust and cold gas

Massive gas-rich disk

Debris disk

IRAM PdB
¹²CO 2-1

Superposed on HST-STIS

When does gas disappear from disk? => constraints on time scale giant planet formation

Augereau, Dutrey et al. 2004, in prep

CO vs H₂

Stellar UV

Stellar + interstellar UV

CO p.d. + Frozen out

H₂ selfshielding

=> Absence of CO does not mean absence of H₂!

Note: both CO and H₂ are only dissociated at 912-1100 Å

C and C⁺ as gas tracers of tenuous disks

- Lines should be detectable by future facilities (APEX, SOFIA, Herschel)
- Mid-IR lines (e.g. [S I] 25 μ m) alternative tracers

Conclusions

- Gas-phase and solid-state species are starting to be observed in outer regions of disks
- Most observed emission and chemistry comes from warm intermediate layer where photoprocesses and thermal desorption play a role
- Significant freeze-out in cold midplane (>20 AU)
- Gas-phase and solid-state bands are useful probes of density and temperature structure
- CO is not a good tracer of gas mass => need to consider alternatives $(H_2, C, C^+, ...)$
 - Need high spectral resolution to get sufficient line/continuum ratio
- Current view hampered by lack of spatial resolution and sensitivity
 - Future mm/IR facilities, i.p. ALMA, JWST-MIRI, ELT, IR interferometry
 - Unique contributions TPF/Darwin will depend on its spectroscopic capabilities

H₂ lines with Spitzer

H₂ lines detected on source, but also at off positions

Observational gas tracers

CO mm:

- detected in some cases but not good mass tracer (photodissociation, freeze-out)
- H₂ pure rotational lines:
 - Pro: main reservoir of gas, does not freeze-out, lines optically thin
 - Con: difficult to observe (low line/cont), only probes warm (>80 K) gas
- H₂ and CO IR/UV lines:
 - detected in several cases, but arise mostly from small amount of high-T gas in inner region
- [C I], [C II], [O I], [S I] fine-structure lines:
 - Results somewhat model dependent

Summary chemistry

- Does chemistry affect disk structure?
 - Gas temperature in upper disk layers can be significantly higher than that of dust (see talks tomorrow) => affects vertical structure and line emission; chemistry determines abundances coolants O, C+, C and CO
 - Freeze-out and dust destruction modify grain opacities
 - Ionization fraction => affects magnetohydrodynamics (but can probably be estimated by small network)

Submillimeter lines

First detection CO 6-5 emission from disk using CSO

Some observational findings

- Simple gas-phase molecules observed
 - Ion-molecule reactions (HCO⁺)
 - Photon processes (high CN/HCN)
 - High deuterium fractionation (DCO+)
 - Low abundances complex species (H₂CO, CH₃OH)
- Data only sensitive to >50 AU
- Lines comes from warm 20-40 K layer with n=10⁶-10⁸ cm⁻³
- Disk-averaged abundances are "depleted" by factor of 5-100 (using mass from dust continuum and assuming gas/dust=100)
- Solid CO and H₂O detected in edge-on disks

Summary chemistry

- Inner disks: highly sophisticated models including radial transport and vertical mixing being developed, but no observational tests yet (need full ALMA with 64x12m)
- Outer disks: 1+1D static flaring disk models reproduce submillimeter lines of simple species within factors of few
 - Emission comes from intermediate warm layer
 - Chemistry in warm layer dominated by photodissociation and thermal desorption => important to know T_{dust} and UV field accurately
 - Molecules strongly depleted in cold midplane => high deuteration fraction
 - CO is not a good gas mass tracer (alternatives H₂, C, C⁺ to be determined)
 - Importance of vertical mixing to be determined: can chemistry put limits?

Molecular abundance ratios

Type	Object	HCO+/CO	CN/HCN
T Tau	LkCa 15	1.6(-5)	7.9
	TW Hya	5.0(-5)	7.1
	DM Tau	2.8(-5)	5.1
Herbig Ae	HD 163296	2.7(-5)	>12.4
	MWC 480	1.5(-5)	>11.7
Protostar	IRAS16293	1.8(-5)	0.05
Dark cloud	TMC-1	1.0(-4)	1.5
PDRs	Orion Bar	2.0(-5)	3.8
	IC 63	2.7(-5)	0.7

D/H ratios

Object	Molecule	D/H
Hot cores	DCN/HCN	0.005-0.02
Dark cloud	DCN/HCN	0.023
	DCO+/HCO+	0.015
Low-mass	DCN/HCN	0.013
protostar	DCO+/HCO+	0.086
Disk (TW Hya)	DCO+/HCO+	0.035
Comet	DCN/HCN	0.002 nucleus
		0.09 jet
	HDO/H ₂ O	0.00032

Solid and gaseous CO toward a young, large edge-on disk

- Red wing line profiles traces accretion to within 0.1 AU from star
- Warm CO gas (up to 200 K), with $CO_{gas}/CO_{solid}\sim 10$

See also: Shuping et al. 2001

Search for solid methanol

Key ingredient for building complex organic molecules

3.47 µm feature, but no 3.54 µm CH₃OH

 $=> CH_3OH/H_2O < 5\%$ in L1489 disk

Pontoppidan et al. 2003

Spitzer observations of edge-on disks

Ices in Protoplanetary Disks Paper Space Telescope • IRS

[elt insets: Hubble Space Telescope: backdrop: artist's depiction

NASA / JPL-Caltech / D. Watson (University of Rochester) ssc2004-08b

- Ices may arise primarily in outer envelope

Example: AB Aur

Emission dominated by extended envelope

Note strong CO 3-2 and 6-5 lines!

Van Zadelhoff et al. 2001 Bacmann, Schreyer et al. in prep.

Spitzer spectra of low-mass YSO's

Serpens core

VLT-ISAAC J, H K image

c2d team data

Detection of abundant solid CO in an edge-on circumstellar disk

VLT-ISAAC K'

Brandner et al. 2000

 $CO_{gas}/CO_{solid} \sim 1$ $T_{ex}(CO) \sim 50 \text{ K}$

Contamination by foreground cloud estimated to be small

Thi, Pontoppidan, vD et al. 2002

Chemical structure of disks

- Surface layer: molecules dissociated by UV photons
- Warm intermediate layer: molecules not much depleted, rich chemistry
- Cold midplane: molecules heavily frozen out

Aikawa & Herbst 1999 Aikawa et al. 2002 Willacy & Langer 2000 Van Zadelhoff et al. 2003 Markwick et al. 2002 Ilgner, Henning et al. 2002

Summary chemistry

- Submillimeter lines of simple species observed, e.g. HCO+, H₂CO, HCN, CN
- Emission comes from intermediate warm layer
- Chemistry in warm layer dominated by photodissociation and thermal desorption
- Molecules strongly depleted in cold midplane

Temperature structure

- $-^{12}CO \tau = 1$ surface near top of disk
- ¹³CO emission from entire disk

A few words about chemistry

Gas-phase chemistry

- Chemistry in upper layers resembles that of a PDR
 - Photodissociation H₂ and CO only at 912-1100 Å
 - Important to treat $H \rightarrow H_2$ and $C^+ \rightarrow C \rightarrow CO$ transitions accurately (Leiden PDR benchmark workshop), e.g., sensitivities to self-shielding, mutual shielding, PAH abundance, ...
 - Photorates are rapid => chemical equilbrium in $\sim 10^3$ yr
 - High abundances of radicals (CN, C₂H, ...) in PDR zone

A few words about chemistry

Gas-phase chemistry

- Elemental abundances (e.g. high vs. low metals) and cosmic ray ionization rate important input parameters
- Gas-phase chemistry not very sensitive to temperature in 10-200 K regime
- Many different chemical networks containing a few hundred to a few thousand reactions => reduction?
 - Wiebe, Semenov et al. 2003, 2004
- Best agreement with well-studied PDRs and dark clouds is a factor of a few – ten => better agreement for disks would be a miracle!

A few words about chemistry

Gas-grain interactions

- Freeze-out/thermal desorption depend sensitively on dust temperature profile
 - Species dependent: CO T>20 K, H₂O T>100 K; binding energies not well known for all species and depend on type of ice or surface
- Fundamental issues with formulation grain surface reactions (diffusion-limited vs. accretion-limited)
- Timescales: t_{ads} ~2x10⁹/ n_H yr => strongly dependent on density

Observational diagnostics stellar UV

- Difficult to disentangle models with single-dish data
- Need ALMA resolution to probe variations
- HCN dissociated by Ly α , CN not

CO gas versus ice

Stellar UV

Stellar + interstellar UV

CO gas

CO ice

IV. Tenuous disks

- Optically thin: τ <1 in UV continuum (and IR) => analytical solution for T_{dust}
- Typical dust masses: ~M_{Earth}
- Do these disks still contain gas? If so, what is the best tracer?
- Mechanisms for disk dispersal?
 - Accretion onto star, planet formation
 - Stellar wind, photoevaporation, tidal encounters
 - Expect most remaining gas at 10-100 AU